Search results
Results From The WOW.Com Content Network
Ampère's right-hand grip rule, [7] also called the right-hand screw rule, coffee-mug rule or the corkscrew-rule; is used either when a vector (such as the Euler vector) must be defined to represent the rotation of a body, a magnetic field, or a fluid, or vice versa, when it is necessary to define a rotation vector to
In 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an oriented area in three dimensions. Every bounded surface in three dimensions can be associated with a unique area vector called its vector area .
Similarly, RHS is the right-hand side. The two sides have the same value, expressed differently, since equality is symmetric. [1] More generally, these terms may apply to an inequation or inequality; the right-hand side is everything on the right side of a test operator in an expression, with LHS defined similarly.
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called unoriented. In mathematics , orientability is a broader notion that, in two dimensions, allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left ...
The vector direction is postulated to be normal to the plane containing the position and velocity vectors of the particle, following a convention known as the right hand rule. Conservation of areal velocity is a general property of central force motion , [ 1 ] and, within the context of classical mechanics, is equivalent to the conservation of ...
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms.
RHS – right-hand side of an equation. rk – rank. (Also written as rank.) RMS, rms – root mean square. rng – non-unital ring. rot – rotor of a vector field. (Also written as curl.) rowsp – row space of a matrix. RTP – required to prove. RV – random variable. (Also written as R.V.)