Ad
related to: what is irrational root of 2 simplified form example worksheet
Search results
Results From The WOW.Com Content Network
Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Examples are e r and π r, which are transcendental for all nonzero rational r. Because the algebraic numbers form a subfield of the real numbers, many irrational real numbers can be constructed by combining transcendental and algebraic numbers. For example, 3 π + 2, π + √ 2 and e √ 3 are irrational (and even transcendental).
Irrational numbers can be Euclidean. A good example is the square root of 2 (an irrational number). It is simply the length of the hypotenuse of a right triangle with legs both one unit in length, and it can be constructed with a straightedge and a compass.
The square root of 2 was the first such number to be proved irrational. Theodorus of Cyrene proved the irrationality of the square roots of non-square natural numbers up to 17, but stopped there, probably because the algebra he used could not be applied to the square root of numbers greater than 17.
Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c, are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers. Gaussian integers, complex numbers a + bi for which both a and b are integers, are also ...
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...