Ad
related to: how to find f(g(3)) on a graph 1 7 y 8 7y 42 how many solutions
Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Let G be a k-regular graph with 2n nodes. If k is sufficiently large, it is known that G has to be 1-factorable: If k = 2n − 1, then G is the complete graph K 2n, and hence 1-factorable (see above). If k = 2n − 2, then G can be constructed by removing a perfect matching from K 2n. Again, G is 1-factorable.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
It follows that the solutions of such an equation are exactly the zeros of the function . In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.
The form of YΔ- and ΔY-transformations used to define the Petersen family is as follows: . If a graph G contains a vertex v with exactly three neighbors, then the YΔ-transform of G at v is the graph formed by removing v from G and adding edges between each pair of its three neighbors.
A graph with three components. In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting ...
A graph is said to be k-factor-critical if every subset of n − k vertices has a perfect matching. Under this definition, a hypomatchable graph is 1-factor-critical. [13] Even more generally, a graph is (a,b)-factor-critical if every subset of n − k vertices has an r-factor, that is, it is the vertex set of an r-regular subgraph of the given ...
[1] [2] A function f : X → Y between topological spaces has a closed graph if its graph is a closed subset of the product space X × Y. A related property is open graph. [3] This property is studied because there are many theorems, known as closed graph theorems, giving conditions under which a function with a closed graph is necessarily ...