Search results
Results From The WOW.Com Content Network
If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
If r < 1, then the series is absolutely convergent. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows:
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
For series of real numbers and complex numbers, a series + + + is unconditionally convergent if and only if the series summing the absolute values of its terms, | | + | | + | | +, is also convergent, a property called absolute convergence. Otherwise, any series of real numbers or complex numbers that converges but does not converge absolutely ...
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
Here the series definitely converges for a > 1, and diverges for a < 1. When a = 1, the condensation transformation gives the series (). The logarithms "shift to the left". So when a = 1, we have convergence for b > 1, divergence for b < 1. When b = 1 the value of c enters.
The Riemann zeta function is defined for real > by the convergent series = = = + + +, which for = would be the harmonic series. It can be extended by analytic continuation to a holomorphic function on all complex numbers except x = 1 {\displaystyle x=1} , where the extended function has a simple pole .