When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli's principle can be used to calculate the lift force on an airfoil, if the behaviour of the fluid flow in the vicinity of the foil is known. For example, if the air flowing past the top surface of an aircraft wing is moving faster than the air flowing past the bottom surface, then Bernoulli's principle implies that the pressure on the ...

  3. Foil (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Foil_(fluid_mechanics)

    Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack.When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection.

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Archimedes' principle · Bernoulli's principle; Navier–Stokes equations; ... Bernoulli's equation: p constant is the total pressure at a point on a streamline + ...

  5. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  6. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    An airfoil affects the speed and direction of the flow over a wide area, producing a pattern called a velocity field. When an airfoil produces lift, the flow ahead of the airfoil is deflected upward, the flow above and below the airfoil is deflected downward leaving the air far behind the airfoil in the same state as the oncoming flow far ahead.

  7. Outline of fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Outline_of_fluid_dynamics

    Kutta–Joukowski theorem – Formula relating lift on an airfoil to fluid speed, density, and circulation; Lift coefficient – Dimensionless quantity relating lift to fluid density and velocity over an area; Lift-induced drag – Type of aerodynamic resistance against the motion of a wing or other airfoil

  8. Airfoil - Wikipedia

    en.wikipedia.org/wiki/Airfoil

    Thin airfoil theory assumes the air is an inviscid fluid so does not account for the stall of the airfoil, which usually occurs at an angle of attack between 10° and 15° for typical airfoils. [20] In the mid-late 2000s, however, a theory predicting the onset of leading-edge stall was proposed by Wallace J. Morris II in his doctoral thesis. [ 21 ]

  9. Static pressure - Wikipedia

    en.wikipedia.org/wiki/Static_pressure

    Bernoulli's equation is foundational to the dynamics of incompressible fluids. In many fluid flow situations of interest, changes in elevation are insignificant and can be ignored. With this simplification, Bernoulli's equation for incompressible flows can be expressed as [2] [3] [4] + =, where: