Ads
related to: partial differential example problems
Search results
Results From The WOW.Com Content Network
Partial differential equation. Nonlinear partial differential equation. list of nonlinear partial differential equations; Boundary condition; Boundary value problem. Dirichlet problem, Dirichlet boundary condition; Neumann boundary condition; Stefan problem; Wiener–Hopf problem; Separation of variables; Green's function; Elliptic partial ...
Dirichlet problems are typical of elliptic partial differential equations, and potential theory, and the Laplace equation in particular. Other examples include the biharmonic equation and related equations in elasticity theory .
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .
In mathematics, a free boundary problem (FB problem) is a partial differential equation to be solved for both an unknown function and an unknown domain. The segment Γ {\displaystyle \Gamma } of the boundary of Ω {\displaystyle \Omega } which is not known at the outset of the problem is the free boundary .
Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. Among the earliest boundary value problems to be studied is the Dirichlet problem , of finding the harmonic functions (solutions to Laplace's ...
A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions that are given on a hypersurface in the domain. [1] A Cauchy problem can be an initial value problem or a boundary value problem (for this case see also Cauchy boundary condition). It is named after Augustin-Louis Cauchy.
Boundary value problems and partial differential equations specify relations between two or more quantities. For instance, in the heat equation, the rate of change of temperature at a point is related to the difference of temperature between that point and the nearby points so that, over time, the heat flows from hotter points to cooler points.