Ad
related to: geometry find the value of variable
Search results
Results From The WOW.Com Content Network
In mathematics, a variable (from Latin variabilis, "changeable") is a symbol, typically a letter, that refers to an unspecified mathematical object. [1] [2] [3] One says colloquially that the variable represents or denotes the object, and that any valid candidate for the object is the value of the variable.
The value of a variable or a constant is any number or other mathematical object assigned to it. Physical quantities have numerical values attached to units of measurement. The value of a mathematical expression is the object assigned to this expression when the variables and constants in it are assigned values.
In statistics, a circumflex (ˆ), called a "hat", is used to denote an estimator or an estimated value. [1] For example, in the context of errors and residuals , the "hat" over the letter ε ^ {\displaystyle {\hat {\varepsilon }}} indicates an observable estimate (the residuals) of an unobservable quantity called ε {\displaystyle \varepsilon ...
For example, (,) means that the distribution of the random variable X is standard normal. [2] 6. Notation for proportionality. See also ∝ for a less ambiguous symbol. ≡ 1. Denotes an identity; that is, an equality that is true whichever values are given to the variables occurring in it. 2.
When the base is 2, this shows that a geometrically distributed random variable can be written as a sum of independent random variables whose probability distributions are indecomposable. Golomb coding is the optimal prefix code [clarification needed] for the geometric discrete distribution. [12]
For example, the equations = = form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point.
Many important problems involve functions of several variables. Solutions of boundary value problems for the Laplace equation satisfy the Dirichlet's principle. Plateau's problem requires finding a surface of minimal area that spans a given contour in space: a solution can often be found by dipping a frame in soapy water.
The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]