Search results
Results From The WOW.Com Content Network
GLUT4 has a Km value for glucose of about 5 mM, which as stated above is the normal blood glucose level in healthy individuals. GLUT4 is the most abundant glucose transporter in skeletal muscle and is thus considered to be rate limiting for glucose uptake and metabolism in resting muscles. [8]
Glucose circulates in the blood of animals as blood sugar. [6] [8] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [8] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Glucose-6-phosphate can then progress through glycolysis. [1] Glycolysis only requires the input of one molecule of ATP when the glucose originates in glycogen. [1] Alternatively, glucose-6-phosphate can be converted back into glucose in the liver and the kidneys, allowing it to raise blood glucose levels if necessary. [2]
In August 1960, in Prague, Robert K. Crane presented for the first time his discovery of the sodium-glucose cotransport as the mechanism for intestinal glucose absorption. [15] Crane's discovery of cotransport was the first ever proposal of flux coupling in biology. [16]
Glucose is not secreted, so excretion = filtration - reabsorption. Both filtration and reabsorption are directly proportional to the concentration of glucose in the plasma. However, while the average maximum reabsorption is about 375 mg/min [1] in healthy individuals, filtration has effectively no limit (within reasonable physiological ranges.)
The kidney is responsible for about half of the total gluconeogenesis in fasting humans. The regulation of glucose production in the kidney is achieved by action of insulin, catecholamines and other hormones. [14] Renal gluconeogenesis takes place in the renal cortex. The renal medulla is incapable of producing glucose due to absence of ...
Ball-and-stick model of a glucose molecule. Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range. The regulation of glucose levels through Homeostasis. This tight regulation is referred to as glucose homeostasis.