When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. AlphaGo - Wikipedia

    en.wikipedia.org/wiki/AlphaGo

    Fan Hui, a professional Go player, and former player with AlphaGo said that "DeepMind had trained AlphaGo by showing it many strong amateur games of Go to develop its understanding of how a human plays before challenging it to play versions of itself thousands of times, a novel form of reinforcement learning which had given it the ability to ...

  3. AlphaGo Zero - Wikipedia

    en.wikipedia.org/wiki/AlphaGo_Zero

    Unlike earlier versions of AlphaGo, Zero only perceived the board's stones, rather than having some rare human-programmed edge cases to help recognize unusual Go board positions. The AI engaged in reinforcement learning, playing against itself until it could anticipate its own moves and how those moves would affect the game's outcome. [10]

  4. MuZero - Wikipedia

    en.wikipedia.org/wiki/MuZero

    MuZero (MZ) is a combination of the high-performance planning of the AlphaZero (AZ) algorithm with approaches to model-free reinforcement learning. The combination allows for more efficient training in classical planning regimes, such as Go, while also handling domains with much more complex inputs at each stage, such as visual video games.

  5. AlphaZero - Wikipedia

    en.wikipedia.org/wiki/AlphaZero

    AlphaZero is a generic reinforcement learning algorithm – originally devised for the game of go – that achieved superior results within a few hours, searching a thousand times fewer positions, given no domain knowledge except the rules."

  6. AlphaDev - Wikipedia

    en.wikipedia.org/wiki/AlphaDev

    AlphaDev is an artificial intelligence system developed by Google DeepMind to discover enhanced computer science algorithms using reinforcement learning.AlphaDev is based on AlphaZero, a system that mastered the games of chess, shogi and go by self-play.

  7. AlphaGo versus Lee Sedol - Wikipedia

    en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

    AlphaGo is a computer program developed by Google DeepMind to play the board game Go. AlphaGo's algorithm uses a combination of machine learning and tree search techniques, combined with extensive training, both from human and computer play. The system's neural networks were initially bootstrapped from human game-play expertise.

  8. Category:AlphaGo - Wikipedia

    en.wikipedia.org/wiki/Category:AlphaGo

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  9. State–action–reward–state–action - Wikipedia

    en.wikipedia.org/wiki/State–action–reward...

    State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.It was proposed by Rummery and Niranjan in a technical note [1] with the name "Modified Connectionist Q-Learning" (MCQ-L).