Search results
Results From The WOW.Com Content Network
Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 10 24 kg (8.84 × 10 24 lb) and makes up 67% of the mass of Earth. [ 1 ] It has a thickness of 2,900 kilometers (1,800 mi) [ 1 ] making up about 46% of Earth's radius and 84% of Earth's volume.
The source of mantle plumes is postulated to be the core-mantle boundary at 3,000 km depth. [25] Because there is little material transport across the core-mantle boundary, heat transfer must occur by conduction, with adiabatic gradients above and below this boundary. The core-mantle boundary is a strong thermal (temperature) discontinuity.
The Earth's mantle is a layer of silicate rock between the crust and the outer core. Its mass of 4.01 × 10 24 kg is 67% the mass of the Earth. [1] It has a thickness of 2,900 kilometres (1,800 mi) [1] making up about 84% of Earth's volume. It is predominantly solid, but in geological time it behaves as a viscous fluid.
Earth's crust and mantle, Mohorovičić discontinuity between bottom of crust and solid uppermost mantle. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust].
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
The resulting motion forms small clusters of small plumes right above the core-mantle boundary that combine to form larger plumes and then contribute to superplumes. The Pacific and African LLSVP, in this scenario, are originally created by a discharge of heat from the core (4000 K) to the much colder mantle (2000 K); the recycled lithosphere ...
After 60 years of trying, geologists finally pried rocks from Earth's upper mantle. That's huge for so many reasons.
Mantle plumes were first proposed by J. Tuzo Wilson in 1963 [4] [non-primary source needed] and further developed by W. Jason Morgan in 1971. A mantle plume is posited to exist where hot rock nucleates [clarification needed] at the core-mantle boundary and rises through the Earth's mantle becoming a diapir in the Earth's crust. [5]