Search results
Results From The WOW.Com Content Network
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.
However, in quantum physics, there is another type of angular momentum, called spin angular momentum, represented by the spin operator S. Spin is often depicted as a particle literally spinning around an axis, but this is a misleading and inaccurate picture: spin is an intrinsic property of a particle, unrelated to any sort of motion in space ...
In physics and chemistry, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1 / 2 for all electrons.
There are several angular momentum operators: total angular momentum (usually denoted J), orbital angular momentum (usually denoted L), and spin angular momentum (spin for short, usually denoted S). The term angular momentum operator can (confusingly) refer to either the total or the orbital angular momentum.
The general expression for the spin angular momentum is [1] =, where is the speed of light in free space and is the conjugate canonical momentum of the vector potential.The general expression for the orbital angular momentum of light is =, where = {,,,} denotes four indices of the spacetime and Einstein's summation convention has been applied.
S = electron spin angular momentum; g s = spin Landé g-factor ... List of equations in nuclear and particle physics; List of equations in wave theory;
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.
A spin- 1 / 2 particle is characterized by an angular momentum quantum number for spin s of 1 / 2 . In solutions of the Schrödinger equation, angular momentum is quantized according to this number, so that total spin angular momentum