Search results
Results From The WOW.Com Content Network
In all, the higher heating value of hydrogen is 18.2% above its lower heating value (142 MJ/kg vs. 120 MJ/kg). For hydrocarbons, the difference depends on the hydrogen content of the fuel. For gasoline and diesel the higher heating value exceeds the lower heating value by about 10% and 7%, respectively, and for natural gas about 11%.
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
Due to the higher density, diesel fuel offers a higher volumetric energy density: the density of EN 590 diesel fuel is defined as 0.820 to 0.845 kg/L (6.84 to 7.05 lb/US gal) at 15 °C (59 °F), about 9.0-13.9% more than EN 228 gasoline (petrol)'s 0.720–0.775 kg/L (6.01–6.47 lb/US gal) at 15 °C, which should be put into consideration when ...
Thus methane has an HHV (Higher heating value) of 55.50 MJ/kg, the highest value of common fuels. Diesel fuel has an HHV value of 44.80 MJ/kg and anthracite coal a value of 32.50 MJ/kg. Moisture and ash-free firewood has a lower value of 21.70 MJ/kg while dry peat has the lowest value of all common fuels of about 15.00 MJ/kg.
Typical fuels specifically intended to be used for diesel engines were petroleum distillates and coal-tar distillates such as the following; these fuels have specific lower heating values of: Diesel oil: 10,200 kcal·kg −1 (42.7 MJ·kg −1) up to 10,250 kcal·kg −1 (42.9 MJ·kg −1)
The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, 790 J⋅kg −1 ⋅K −1, and 14300 J⋅kg −1 ⋅K −1, respectively. [4] While the substance is undergoing a phase transition , such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into ...
The number of 2.63 kg of carbon dioxide from 1 liter of Diesel is close to the values found in the literature. For gasoline, with a density of 0.75 kg/L and a ratio of carbon to hydrogen atoms of about 6 to 14, the estimated value of carbon emission if 1 liter of gasoline is burnt gives:
The Wobbe index is expressed in MJ/Nm³ (where 'Nm³' indicates'm³ in Normal conditions), or sometimes in BTU/scf.In the case of natural gas (molar mass 17 g/mol), the typical heating value is around 39 MJ/Nm³ (1,050 BTU/scf) and the specific gravity is approximately 0.59, giving a typical Wobbe index of 51 MJ/Nm³ (1,367 BTU/scf).