Search results
Results From The WOW.Com Content Network
Solving them as a system of two simultaneous equations finds the points which belong to both shapes, which is the intersection. The equations below were solved using Maple . This method has applications in computational geometry , graphics rendering , shape modeling , physics-based modeling , and related types of computational 3d simulations.
Indeed, multiplying each equation of the second auxiliary system by , adding with the corresponding equation of the first auxiliary system and using the representation = +, we immediately see that equations number 2 through n of the original system are satisfied; it only remains to satisfy equation number 1.
Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...
Direct linear transformation (DLT) is an algorithm which solves a set of variables from a set of similarity relations: for =, …,. where and are known vectors, denotes equality up to an unknown scalar multiplication, and is a matrix (or linear transformation) which contains the unknowns to be solved.
In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968.
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel .
The application of MacCormack method to the above equation proceeds in two steps; a predictor step which is followed by a corrector step. Predictor step: In the predictor step, a "provisional" value of u {\displaystyle u} at time level n + 1 {\displaystyle n+1} (denoted by u i p {\displaystyle u_{i}^{p}} ) is estimated as follows
2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways: No intersection at all; Intersection in exactly one point; Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the points in the latter