Search results
Results From The WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
The stub is made capacitive or inductive according to whether the main line presents an inductive or capacitive impedance, respectively. This is not the same as the actual impedance of the load since the reactive part of the load impedance will be subject to impedance transformer action and the resistive part.
Inductive reactance is the opposition of an inductor to an alternating current. [21] It is defined analogously to electrical resistance in a resistor, as the ratio of the amplitude (peak value) of the alternating voltage to current in the component = = Reactance has units of ohms.
From the equation, if the STATCOM creates a voltage magnitude greater than the system voltage, it supplies capacitive reactive power to the system. If the STATCOM's voltage magnitude is less, it consumes inductive reactive power from the system.
It uses the principle that the positive phase angle of an inductive impedance can be compensated by the negative phase angle of a capacitive impedance when put in the opposite arm and the circuit is at resonance; i.e., no potential difference across the detector (an AC voltmeter or ammeter)) and hence no current flowing through it. The unknown ...
Ideally, the impedance of a capacitor falls with increasing frequency at 20 dB/decade. However, due partly to the inductive properties of the connections, and partly to non-ideal characteristics of the capacitor material, real capacitors also have inductive properties whose impedance rises with frequency at 20 dB/decade.
Fig. 1 L P σ and L S σ are primary and secondary leakage inductances expressed in terms of inductive coupling coefficient under open-circuited conditions. The magnetic circuit's flux that does not interlink both windings is the leakage flux corresponding to primary leakage inductance L P σ and secondary leakage inductance L S σ .
Summation of the inductive and capacitive coupling coefficients is performed by formula [3] = + +. (8) This formula is derived from the definition (6) and formulas (4) and (7). Note that the sign of the coupling coefficient itself is of no importance. Frequency response of the filter will not change if signs of all the coupling coefficients ...