When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Enzymes act on small molecules called substrates, which an enzyme converts into products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics.

  3. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

  4. Lyase - Wikipedia

    en.wikipedia.org/wiki/Lyase

    In biochemistry, a lyase is an enzyme that catalyzes the breaking (an elimination reaction) of various chemical bonds by means other than hydrolysis (a substitution reaction) and oxidation, often forming a new double bond or a new ring structure. [1] The reverse reaction is also possible (called a Michael reaction). For example, an enzyme that ...

  5. DNA-(apurinic or apyrimidinic site) lyase - Wikipedia

    en.wikipedia.org/wiki/DNA-(apurinic_or...

    The enzyme DNA-(apurinic or apyrimidinic site) lyase, also referred to as DNA-(apurinic or apyrimidinic site) 5'-phosphomonoester-lyase (systematic name) or DNA AP lyase (EC 4.2.99.18) catalyzes the cleavage of the C-O-P bond 3' from the apurinic or apyrimidinic site in DNA via β-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. [1]

  6. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Nucleophilic catalysis: This process involves the donation of electrons from the enzyme's nucleophile to a substrate to form a covalent bond between them during the transition state. The strength of this interaction depends on two aspects.: the ability of the nucleophilic group to donate electrons and the electrophile to accept them.

  7. Alkaline phosphatase - Wikipedia

    en.wikipedia.org/wiki/Alkaline_phosphatase

    The enzyme alkaline phosphatase (ALP, alkaline phenyl phosphatase) is a phosphatase with the physiological role of dephosphorylating compounds. The enzyme is found across a multitude of organisms, prokaryotes and eukaryotes alike, with the same general function, but in different structural forms suitable to the environment they function in. Alkaline phosphatase is found in the periplasmic ...

  8. Phenylalanine hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_hydroxylase

    Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine.PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH 4, a pteridine cofactor) and a non-heme iron for catalysis.

  9. Glycogen phosphorylase - Wikipedia

    en.wikipedia.org/wiki/Glycogen_phosphorylase

    The glycogen phosphorylase monomer is a large protein, composed of 842 amino acids with a mass of 97.434 kDa in muscle cells. While the enzyme can exist as an inactive monomer or tetramer, it is biologically active as a dimer of two identical subunits.