When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  3. Dual uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_uniform_polyhedron

    In this example, the size of the vertex figure was chosen so that its circumcircle lies on the intersphere of the cuboctahedron, which also becomes the intersphere of the dual rhombic dodecahedron. Dorman Luke's construction can only be used when a polyhedron has such an intersphere so that the vertex figure has a circumcircle.

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    For every convex polyhedron, there exists a dual polyhedron having faces in place of the original's vertices and vice versa, and; the same number of edges. The dual of a convex polyhedron can be obtained by the process of polar reciprocation. [34] Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again.

  5. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    Every polyhedron has a dual (or "polar") polyhedron with faces and vertices interchanged. The dual of every Platonic solid is another Platonic solid, so that we can arrange the five solids into dual pairs. The tetrahedron is self-dual (i.e. its dual is another tetrahedron). The cube and the octahedron form a dual pair.

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  7. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron. A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them.

  8. Trapezohedron - Wikipedia

    en.wikipedia.org/wiki/Trapezohedron

    In geometry, an n-gonal trapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron [3], [4] is the dual polyhedron of an n-gonal antiprism.The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites.

  9. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    3.9 Dual uniform star polyhedra. ... polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.