When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Integrals and derivatives of displacement, including absement, as well as integrals and derivatives of energy, including actergy. (Janzen et al. 2014) In kinematics, absement (or absition) is a measure of sustained displacement of an object from its initial position, i.e. a measure of how far away and for how long.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  6. Transport theorem - Wikipedia

    en.wikipedia.org/wiki/Transport_theorem

    The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.

  7. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    The Atwood machine (or Atwood's machine) was invented in 1784 by the English mathematician George Atwood as a laboratory experiment to verify the mechanical laws of motion with constant acceleration. Atwood's machine is a common classroom demonstration used to illustrate principles of classical mechanics .

  8. Kinetics (physics) - Wikipedia

    en.wikipedia.org/wiki/Kinetics_(physics)

    In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques. [ 1 ] [ 2 ] [ 3 ] Since the mid-20th century, the term " dynamics " (or " analytical dynamics ") has largely superseded "kinetics" in physics textbooks, [ 4 ...

  9. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 ... The Cambridge Handbook of Physics Formulas. Cambridge University Press.