Search results
Results From The WOW.Com Content Network
The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate (Malaprade reaction) but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as ...
Another reagent is lead tetraacetate (Pb(OAc) 4). [4] These I- and Pb-based methods are called the Malaprade reaction and Criegee oxidation, respectively. The former is favored for aqueous solutions, the latter for nonaqueous solutions. [1] Cyclic intermediate are invariably invoked. The ring then fragments, with cleavage of the carbon–carbon ...
Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C 2 H 3 O 2) 4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis. [2]
Lipid peroxidation, or lipid oxidation, is a complex chemical process that leads to oxidative degradation of lipids, [1] resulting in the formation of peroxide and hydroperoxide derivatives. [2] It occurs when free radicals , specifically reactive oxygen species (ROS), interact with lipids within cell membranes , typically polyunsaturated fatty ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
It was also observed, that the addition of lead tetraacetate can facilitate the Stieglitz rearrangement of amine derivatives. [32] After the formation of the activated amine derivative intermediate by coordination to the lead center, the following rearrangement again proceeds via migration of the aromatic group under formation of a C–N bond ...
The mechanism of carbonyl oxidation by iodine(III) reagents varies as a function of substrate structure and reaction conditions, but some generalizations are possible. Under basic conditions, the active iodinating species are iodine(III) compounds in which any relatively acidic ligands on iodine (such as acetate) have been replaced by alkoxide. [1]
Especially when in concentrated form, organic peroxides can decompose by self-oxidation, since organic peroxides contain both an oxidizer (the O-O bond) and fuel (C-H and C-C bonds). A "self-accelerating decomposition" occurs when the rate of peroxide decomposition generates heat at a faster rate than it can be dissipated to the environment ...