Search results
Results From The WOW.Com Content Network
All clinical experience with NCT to date is with boron-10; hence this method is known as boron neutron capture therapy (BNCT). [1] Use of another non-radioactive isotope, such as gadolinium, has been limited to experimental animal studies and has not been done clinically.
Gadolinium is used in nuclear marine propulsion systems as a burnable poison. The use of gadolinium in neutron capture therapy to target tumors has been investigated, and gadolinium-containing compounds have proven promising. [31]
Each salient feature of the reactor was designed in relation to its use for therapy and diagnosis or in the advancement of basic medical science.” [3] One of the treatments pioneered at this reactor was boron neutron capture therapy, or BNCT. This promising treatment was developed for use against glioblastoma multiforme, an otherwise ...
Neutron capture therapy was first proposed in the literature in 1936 by Gordon L. Locher, who observed that isotopes with large neutron capture cross sections, such as boron-10, could be accumulated in cancerous tissue and bombarded with thermal neutrons to induce destruction of the cancerous cells. [4]
Fast neutron therapy utilizes high energy neutrons typically between 50 and 70 MeV to treat cancer. Most fast neutron therapy beams are produced by reactors, cyclotrons (d+Be) and linear accelerators. Neutron therapy is currently available in Germany, Russia, South Africa and the United States.
Most of the radiolytic activity occurs in the core of the reactor where the neutron flux is highest; the bulk of energy is deposited in water from fast neutrons and gamma radiation, the contribution of thermal neutrons is much lower. In air-free water, the concentration of hydrogen, oxygen, and hydrogen peroxide reaches steady state at about ...
Selected tissue distribution studies on one of these nanotubes, {([Na+][1-Me-2-((CH2)4NH-)-1,2-C2B9H10][OEt])n(SWCNT)} (Va), showed that the boron atoms are concentrated more in tumors cells than in blood and other organs, making it an attractive nanovehicle for the delivery of boron to tumor cells for an effective boron neutron capture therapy ...
Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. [1] Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons , which are repelled electrostatically .