Search results
Results From The WOW.Com Content Network
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods include jumping up and down make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
Rutherford applied the principle of a radioactive element's half-life in studies of age determination of rocks by measuring the decay period of radium to lead-206. Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the ...
The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
The half-life, t 1/2, is the time taken for the activity of a given amount of a radioactive substance to decay to half of its initial value. The decay constant , λ " lambda ", the reciprocal of the mean lifetime (in s −1 ), sometimes referred to as simply decay rate .
This refers to the time required for half of a given number of radioactive atoms to decay and is inversely related to the isotope's decay constant, λ. Half-lives have been determined in laboratories for many radionuclides, and can range from nearly instantaneous—hydrogen-5 decays in less time than it takes for a photon to go from one end of ...
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.
Secular equilibrium can occur in a radioactive decay chain only if the half-life of the daughter radionuclide B is much shorter than the half-life of the parent radionuclide A. In such a case, the decay rate of A and hence the production rate of B is approximately constant, because the half-life of A is very long compared to the time scales ...