When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).

  4. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...

  5. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding ...

  6. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph , G , contains a Hamiltonian path , a path that visits every vertex in the graph exactly once.

  7. Circuit rank - Wikipedia

    en.wikipedia.org/wiki/Circuit_rank

    The circuit rank of a hypergraph can be derived by its Levi graph, with the same circuit rank but reduced to a simple graph. = + (+) where g is the degree sum, e is the number of edges in the given graph, v is the number of vertices, and c is the number of connected components.

  8. Self-avoiding walk - Wikipedia

    en.wikipedia.org/wiki/Self-avoiding_walk

    In mathematics, a self-avoiding walk (SAW) is a sequence of moves on a lattice (a lattice path) that does not visit the same point more than once. This is a special case of the graph theoretical notion of a path. A self-avoiding polygon (SAP) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding ...

  9. Cycle space - Wikipedia

    en.wikipedia.org/wiki/Cycle_space

    In graph theory, it is known as the circuit rank, cyclomatic number, or nullity of the graph. Combining this formula for the rank with the fact that the cycle space is a vector space over the two-element field shows that the total number of elements in the cycle space is exactly 2 m − n + c {\displaystyle 2^{m-n+c}} .