Search results
Results From The WOW.Com Content Network
The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic, or full moment, strength and is larger than the elastic section modulus, reflecting the section's strength beyond the elastic range. [1] Equations for the ...
The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: [1] A stiffer material will have a higher elastic modulus. An elastic modulus has the form: =
is the elastic modulus and is the second moment of area of the beam's cross section. I {\displaystyle I} must be calculated with respect to the axis which is perpendicular to the applied loading. [ N 1 ] Explicitly, for a beam whose axis is oriented along x {\displaystyle x} with a loading along z {\displaystyle z} , the beam's cross section is ...
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
The SI unit for elasticity and the elastic modulus is the pascal (Pa). This unit is defined as force per unit area, generally a measurement of pressure , which in mechanics corresponds to stress . The pascal and therefore elasticity have the dimension L −1 ⋅M⋅T −2 .
The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.
Flexural modulus measurement For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the ...