When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,

  3. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  4. Continuous knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Continuous_knapsack_problem

    In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.

  5. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    It is a special case of the integer knapsack problem, and has applications wider than just currency. It is also the most common variation of the coin change problem , a general case of partition in which, given the available denominations of an infinite set of coins, the objective is to find out the number of possible ways of making a change ...

  6. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  7. Strong NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Strong_NP-completeness

    For example, bin packing is strongly NP-complete while the 0-1 Knapsack problem is only weakly NP-complete. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in pseudo-polynomial time by dynamic programming.

  8. Weak NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Weak_NP-completeness

    For example, the NP-hard knapsack problem can be solved by a dynamic programming algorithm requiring a number of steps polynomial in the size of the knapsack and the number of items (assuming that all data are scaled to be integers); however, the runtime of this algorithm is exponential time since the input sizes of the objects and knapsack are ...

  9. Quadratic knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_knapsack_problem

    The quadratic knapsack problem (QKP), first introduced in 19th century, [1] is an extension of knapsack problem that allows for quadratic terms in the objective function: Given a set of items, each with a weight, a value, and an extra profit that can be earned if two items are selected, determine the number of items to include in a collection without exceeding capacity of the knapsack, so as ...