Search results
Results From The WOW.Com Content Network
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,
Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem. A variant of bin packing that occurs in practice is when items can share space when packed into a bin.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
The multiple knapsack problem (MKP) is a generalization of both the max-sum MSSP and the knapsack problem. In this problem, there are m knapsacks and n items, where each item has both a value and a weight. The goal is to pack as much value as possible into the m bins, such that the total weight in each bin is at most its capacity.
The section should mention the greedy 2-approximation algorithm for the 0-1 case also. In the end of the normal greedy, compare the solution to the most valueable item, and choose this item instead if it is a better solution. 2-bound is proved in "On the approximation ratio of Greedy Knapsack", by Pekka Kilpeläinen.