Search results
Results From The WOW.Com Content Network
A regular icosahedron can be distorted or marked up as a lower pyritohedral symmetry, [2] [3] and is called a snub octahedron, snub tetratetrahedron, snub tetrahedron, and pseudo-icosahedron. [4] This can be seen as an alternated truncated octahedron .
The full symmetry group of the icosahedron (including reflections) is known as the full icosahedral symmetry. [13] It is isomorphic to the product of the rotational symmetry group and the cyclic group of size two, generated by the reflection through the center of the regular icosahedron.
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
Toggle Solids with full icosahedral symmetry subsection. 1.1 Platonic solids. ... or hexakis icosahedron truncated icosidodecahedron: 120 180 62 scalene triangle:
The truncated icosahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] It has the same symmetry as the regular icosahedron, the icosahedral symmetry , and it also has the property of vertex-transitivity .
The icosahedron, as a uniform snub tetrahedron, is similar to these snub-pair compounds: compound of two snub cubes and compound of two snub dodecahedra. Together with its convex hull, it represents the icosahedron-first projection of the nonuniform snub tetrahedral antiprism .
A dodecahedron and its dual icosahedron The intersection of both solids is the icosidodecahedron , and their convex hull is the rhombic triacontahedron . Seen from 2-fold, 3-fold and 5-fold symmetry axes
A rhombic icosahedron. The rhombic icosahedron is a polyhedron shaped like an oblate sphere.Its 20 faces are congruent golden rhombi; [1] 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of its 2 poles; these 2 vertices lie on its axis of 5-fold symmetry, which is perpendicular to 5 axes of 2-fold symmetry through the midpoints of opposite equatorial ...