Search results
Results From The WOW.Com Content Network
Most two-sample t-tests are robust to all but large deviations from the assumptions. [22] For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
Likewise, the one-sample t-test statistic, (¯) = (¯) / follows a Student's t distribution with n − 1 degrees of freedom when the hypothesized mean is correct. Again, the degrees-of-freedom arises from the residual vector in the denominator.
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The simplest application of this equation is in performing Welch's t-test. An improved equation was derived to reduce underestimating the effective degrees of freedom if the pooled sample variances have small degrees of freedom. Examples are jackknife and imputation-based variance estimates [3].
Thanks to t-test theory, we know this test statistic under the null hypothesis follows a Student t-distribution with degrees of freedom. If we wish to reject the null at significance level α = 0.05 {\displaystyle \alpha =0.05\,} , we must find the critical value t α {\displaystyle t_{\alpha }} such that the probability of T n > t α ...
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance. Select a significance level (α), the maximum acceptable false positive rate. Common values are 5% and 1%. Compute from the observations the observed value t obs of the test statistic T.