Search results
Results From The WOW.Com Content Network
Synthetic-aperture radar (SAR), was invented in the early 1950s at Goodyear Aircraft Corporation. Using a single, relatively small antenna carried on an aircraft, a ...
The history of synthetic-aperture radar begins in 1951, with the invention of the technology by mathematician Carl A. Wiley, and its development in the following decade. Initially developed for military use, the technology has since been applied in the field of planetary science .
The radar mile is the time it takes for a radar pulse to travel one nautical mile, reflect off a target, and return to the radar antenna. Since a nautical mile is defined as 1,852 m, then dividing this distance by the speed of light (299,792,458 m/s), and then multiplying the result by 2 yields a result of 12.36 μs in duration.
It was the U.S. Army's primary long-distance radar throughout World War II and was deployed around the world. It is also known as the Pearl Harbor Radar, since it was an SCR-270 set that detected the incoming raid about 45 minutes before the 7 December 1941, attack on Pearl Harbor commenced.
In 1951, Carl A. Wiley invented synthetic-aperture radar, which, though distinct from mainstream Doppler radar, was based on Doppler principles, and originally patented as "Pulsed Doppler Radar Methods and Means," #3,196,436. Modern Doppler systems are light enough for mobile ground surveillance associated with infantry and surface ships.
Radar coverage along the UK coast, 1939–1940. By 1937, the first three stations were ready, and the associated system was put to the test. The results were encouraging, and the government immediately commissioned construction of 17 additional stations. This became Chain Home, the array of fixed radar towers on the east and south coasts of ...
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
A radar with a wavelength of 2 meters (VHF band, 150 MHz) cannot detect objects that are much smaller than 2 meters and requires an antenna whose size is on the order of 2 meters (an awkward size for use on aircraft). In contrast, a radar with a 10 cm wavelength can detect objects 10 cm in size with a reasonably sized antenna.