Search results
Results From The WOW.Com Content Network
Also in 1950, Emanuel Maxwell and, almost simultaneously, C.A. Reynolds et al. found that the critical temperature of a superconductor depends on the isotopic mass of the constituent element. This important discovery pointed to the electron-phonon interaction as the microscopic mechanism responsible for superconductivity.
These rules were authored Bernd T. Matthias who discovered hundreds of superconductors using these principles in the 1950s and 1960s. Deviations from these rules have been found since the end of the 1970s with the discovery of unconventional superconductors.
The precise date and circumstances of the discovery were only reconstructed a century later, when Onnes's notebook was found. [10] In subsequent decades, superconductivity was observed in several other materials. In 1913, lead was found to superconduct at 7 K, and in 1941 niobium nitride was found to superconduct at 16 K.
Heike Kamerlingh Onnes (Dutch: [ˈɦɛikə ˈkaːmərlɪŋ ˈɔnəs]; 21 September 1853 – 21 February 1926) was a Dutch physicist.After studying in Groningen and Heidelberg, he became professor of experimental physics at the University of Leiden where he taught from 1882 to 1923.
Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen [77 K (−196.2 °C; −321.1 °F)] at about 93 K (−180.2 °C; −292.3 °F).
Breakthrough would mark ‘holy grails of modern physics, unlocking major new developments in energy, transportation, healthcare, and communications’ – but it is a long way from being proven
Explore the shocking discovery in high-temperature superconductors that may initiate a new era of power. Skip to main content. Sign in. Mail. 24/7 Help. For premium support please call: 800-290 ...
However, a number of materials – including the original discovery and recently discovered pnictide superconductors – have critical temperatures below 77 K (−196.2 °C) but nonetheless are commonly referred to in publications as high-T c class.