Ads
related to: spur gear design formulas for sale
Search results
Results From The WOW.Com Content Network
Spur gear. Spur gears or straight-cut gears are the simplest type of gear. They consist of a cylinder or disk with teeth projecting radially. Viewing the gear at 90 degrees from the shaft length (side on) the tooth faces are straight and aligned parallel to the axis of rotation. Looking down the length of the shaft, a tooth's cross section is ...
A face gear set typically consists of a disk-shaped gear, grooved on at least one face, in combination with a spur, helical, or conical pinion. A face gear has a planar pitch surface and a planar root surface, both of which are perpendicular to the axis of rotation. [ 1 ]
Non-circular gear example Another non-circular gear. A non-circular gear (NCG) is a special gear design with special characteristics and purpose. While a regular gear is optimized to transmit torque to another engaged member with minimum noise and wear and with maximum efficiency, a non-circular gear's main objective might be ratio variations, axle displacement oscillations and more.
Spur-gear differential. A spur-gear differential has equal-sized spur gears at each end, each of which is connected to an output shaft. [8] The input torque (i.e. from the engine or transmission) is applied to the differential via the rotating carrier. [8] Pinion pairs are located within the carrier and rotate freely on pins supported by the ...
The involute gear profile, sometimes credited to Leonhard Euler, [1] was a fundamental advance in machine design, since unlike with other gear systems, the tooth profile of an involute gear depends only on the number of teeth on the gear, pressure angle, and pitch. That is, a gear's profile does not depend on the gear it mates with.
Pressure angles. Pressure angle in relation to gear teeth, also known as the angle of obliquity, [1] is the angle between the tooth face and the gear wheel tangent. It is more precisely the angle at a pitch point between the line of pressure (which is normal to the tooth surface) and the plane tangent to the pitch surface.
Two meshed spur gears, with a 2:1 ratio. The simplest example of a gear train has two gears. The input gear (also known as the drive gear or driver) transmits power to the output gear (also known as the driven gear). The input gear will typically be connected to a power source, such as a motor or engine.
Two intermeshing spur gears rotating at different velocity due to differing gear ratio. A gear [1] [2] or gearwheel [3] [4] [5] is a rotating machine part typically used to transmit rotational motion and/or torque by means of a series of teeth that engage with compatible teeth of another gear or other part.