Search results
Results From The WOW.Com Content Network
The change in reactivity caused by a change of voids inside the reactor is directly proportional to the void coefficient. A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts predominantly as neutron absorber.
Most reactor systems employ a cooling system that is physically separate from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized-water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling-water reactor.
Parallel to the development of the ABWR, General Electric also developed a different concept, known as the simplified boiling water reactor (SBWR). This smaller 600 megawatt electrical reactor was notable for its incorporation—for the first time ever in a light water reactor [citation needed] —of "passive safety" design principles. The ...
The prototype fast breeder reactor has a negative void coefficient, thus ensuring a high level of passive nuclear safety. This means that when the reactor overheats (below the boiling point of sodium) the speed of the fission chain reaction decreases, lowering the power level and the temperature. [ 25 ]
This is measured by the coolant void coefficient. Most modern nuclear power plants have a negative void coefficient, indicating that as water turns to steam, power instantly decreases. Two exceptions are the Soviet RBMK and the Canadian CANDU. Boiling water reactors, on the other hand, are designed to have steam voids inside the reactor vessel.
The result is that, about 6–8 hours after a reactor is shut down, it can become physically impossible to restart the chain reaction until the 135 Xe has had a chance to decay over the next several hours. This temporary state, which may last several days and prevent restart, is called the iodine pit or xenon-poisoning. It is one reason why ...
Such a condition is called a "positive void coefficient", and the RBMK reactor series has the highest positive void coefficient of any commercial reactor ever designed. A high void coefficient does not necessarily make a reactor inherently unsafe, as some of the fission neutrons are emitted with a delay of seconds or even minutes (post-fission ...
A fast reactor uses no moderator but relies on fission produced by unmoderated fast neutrons to sustain the chain reaction. In some fast reactor designs, up to 20% of fissions can come from direct fast neutron fission of uranium-238, an isotope which is not fissile at all with thermal neutrons.