Ad
related to: phenolphthalein indicator purpose in the body system
Search results
Results From The WOW.Com Content Network
The Kastle–Meyer test is a presumptive blood test, first described in 1903, in which the chemical indicator phenolphthalein is used to detect the possible presence of hemoglobin. It relies on the peroxidase -like activity of hemoglobin in blood to catalyze the oxidation of phenolphthalin (the colorless reduced form of phenolphthalein) into ...
Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols in experiments. It is a weak acid, which can lose H + ions in solution. The nonionized phenolphthalein molecule is colorless and the double deprotonated phenolphthalein ion is fuchsia. Further proton loss in higher pH occurs slowly and leads to a colorless form.
Chemical structure of phenolphthalein, a common phthalein dye. Phthalein dyes are a class of dyes mainly used as pH indicators, due to their ability to change colors depending on pH. [1] They are formed by the reaction of phthalic anhydride with various phenols. They are a subclass of triarylmethane dyes. Common phthalein dyes include ...
o-Cresolphthalein is a phthalein dye used as a pH indicator in titrations. It is insoluble in water but soluble in ethanol. Its solution is colourless below pH 8.2, and purple above 9.8. Its molecular formula is C 22 H 18 O 4. It is used medically to determine calcium levels in the human body, or to synthesize polyamides or polyimides.
It is used as a pH indicator in applications such as growth mediums for microorganisms and titrations. In clinical practise, it is commonly used as a diagnostic technique. The most common use of bromocresol green is to measure serum albumin concentration within mammalian blood samples in possible cases of kidney failure and liver disease.
Hence, a pH indicator is a chemical detector for hydronium ions (H 3 O +) or hydrogen ions (H +) in the Arrhenius model. Normally, the indicator causes the color of the solution to change depending on the pH. Indicators can also show change in other physical properties; for example, olfactory indicators show change in their odor.
They are slippery to the touch, can taste bitter [1] and change the color of pH indicators (e.g., turn red litmus paper blue). In water, by altering the autoionization equilibrium , bases yield solutions in which the hydrogen ion activity is lower than it is in pure water, i.e., the water has a pH higher than 7.0 at standard conditions.
In an IDA assay, a receptor is incubated with the indicator. When the analyte is added to the mixture, the indicator is released to the environment. Once the indicator is released it either changes color (C-IDA) or fluoresces (F-IDA). [44] Types of Chemosensors. (1.) Indicator-spacer-receptor (ISR) (2.) Indicator-Displacement Assay (IDA)