Search results
Results From The WOW.Com Content Network
The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = x n. Traditionally important cases are y = x 2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm.
Taking an example, the area under the curve y = x 2 over [0, 2] can be procedurally computed using Riemann's method. The interval [0, 2] is firstly divided into n subintervals, each of which is given a width of 2 n {\displaystyle {\tfrac {2}{n}}} ; these are the widths of the Riemann rectangles (hereafter "boxes").
Area under the curve. Add languages. Add links. Article; Talk; English. Read; Edit; View history; Tools. ... Text is available under the Creative Commons Attribution ...
License: open source under GPL license (free of charge) Languages: 55; Geometry: points, lines, all conic sections, vectors, parametric curves, locus lines; Algebra: direct input of inequalities, implicit polynomials, linear and quadratic equations; calculations with numbers, points and vectors
While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not necessarily just rectangles, and so it is more flexible. For this reason, the Lebesgue definition makes it possible to calculate integrals for a broader class of functions.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
In 1659 van Heuraet published a construction showing that the problem of determining arc length could be transformed into the problem of determining the area under a curve (i.e., an integral). As an example of his method, he determined the arc length of a semicubical parabola, which required finding the area under a parabola. [9]