Search results
Results From The WOW.Com Content Network
MAC algorithms can be constructed from other cryptographic primitives, like cryptographic hash functions (as in the case of HMAC) or from block cipher algorithms (OMAC, CCM, GCM, and PMAC). However many of the fastest MAC algorithms, like UMAC - VMAC and Poly1305-AES , are constructed based on universal hashing .
HMAC uses two passes of hash computation. Before either pass, the secret key is used to derive two keys – inner and outer. Next, the first pass of the hash algorithm produces an internal hash derived from the message and the inner key. The second pass produces the final HMAC code derived from the inner hash result and the outer key.
HMAC-based one-time password (HOTP) is a one-time password (OTP) algorithm based on HMAC. It is a cornerstone of the Initiative for Open Authentication (OATH). HOTP was published as an informational IETF RFC 4226 in December 2005, documenting the algorithm along with a Java implementation. Since then, the algorithm has been adopted by many ...
ClientKey = HMAC(SaltedPassword, 'Client Key') ServerKey = HMAC(SaltedPassword, 'Server Key') ClientProof = p = ClientKey XOR HMAC(H(ClientKey), Auth) ServerSignature = v = HMAC(ServerKey, Auth) where the XOR operation is applied to byte strings of the same length, H(ClientKey) is a normal hash of ClientKey. 'Client Key' and 'Server Key' are ...
The content of such spam may often vary in its details, which would render normal checksumming ineffective. By contrast, a "fuzzy checksum" reduces the body text to its characteristic minimum, then generates a checksum in the usual manner. This greatly increases the chances of slightly different spam emails producing the same checksum.
HKDF is a simple key derivation function (KDF) based on the HMAC message authentication code. [ 1 ] [ 2 ] It was initially proposed by its authors as a building block in various protocols and applications, as well as to discourage the proliferation of multiple KDF mechanisms. [ 2 ]
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
In cryptography, a Key Checksum Value (KCV) is the checksum of a cryptographic key. [1] It is used to validate the integrity of the key or compare keys without knowing their actual values. The KCV is computed by encrypting a block of bytes, each with value '00' or '01', with the cryptographic key and retaining the first 6 hexadecimal characters ...