Search results
Results From The WOW.Com Content Network
Equivalently, it is one of the connected components of the subgraph of G formed by repeatedly deleting all vertices of degree less than k. If a non-empty k-core exists, then, clearly, G has degeneracy at least k, and the degeneracy of G is the largest k for which G has a k-core. A vertex has coreness if it belongs to a -core but not to any ...
Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.
A graph is k-choosable (or k-list-colorable) if it has a proper list coloring no matter how one assigns a list of k colors to each vertex. The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f(v) to ...
A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.
A near-perfect matching, in a graph with odd order, is one that saturates all but one vertex. A maximum matching is a matching that uses as many edges as possible; the matching number α′(G) of a graph G is the number of edges in a maximum matching. A maximal matching is a matching to which no additional edges can be added. maximal 1.
The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...
A complete graph with n nodes represents the edges of an (n – 1)-simplex. Geometrically K 3 forms the edge set of a triangle, K 4 a tetrahedron, etc. The Császár polyhedron, a nonconvex polyhedron with the topology of a torus, has the complete graph K 7 as its skeleton. [15] Every neighborly polytope in four or more dimensions also has a ...
From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]