Search results
Results From The WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
The set of all integers, {..., −1, 0, 1, 2, ...} is a countably infinite set. The set of all even integers is also a countably infinite set, even if it is a proper subset of the integers. [3] The set of all rational numbers is a countably infinite set as there is a bijection to the set of integers. [3]
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
the set of all algebraic numbers, the set of all computable numbers, the set of all computable functions, the set of all binary strings of finite length, and; the set of all finite subsets of any given countably infinite set. These infinite ordinals: ω, ω + 1, ω⋅2, ω 2 are among the countably infinite sets. [6] For example, the sequence ...
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).