Search results
Results From The WOW.Com Content Network
In general, carotenoids absorb wavelengths ranging from 400 to 550 nanometers (violet to green light). This causes the compounds to be deeply colored yellow, orange, or red. Carotenoids are the dominant pigment in autumn leaf coloration of about 15-30% of tree species, [3] but many plant colors, especially reds and purples, are due to polyphenols.
Two examples of carotenoids are lycopene and β-carotene. These molecules also absorb light most efficiently in the 400 – 500 nm range. Due to their absorption region, carotenoids appear red and yellow and provide most of the red and yellow colours present in fruits and flowers. The carotenoid molecules also serve a safeguarding function.
All other carotenoids, including lycopene, have no beta-ring and thus no vitamin A activity (although they may have antioxidant activity and thus biological activity in other ways). Animal species differ greatly in their ability to convert retinyl (beta-ionone) containing carotenoids to retinals. Carnivores in general are poor converters of ...
In addition, there are many non-chlorophyll accessory pigments, such as carotenoids or phycobiliproteins, which also absorb light and transfer that light energy to photosystem chlorophyll. Some of these accessory pigments, in particular the carotenoids, also serve to absorb and dissipate excess light energy, or work as antioxidants. [1]
The carotenoids have another role as an antioxidant to prevent photo-oxidative damage of chlorophyll molecules. Each antenna complex has between 250 and 400 pigment molecules and the energy they absorb is shuttled by resonance energy transfer to a specialized chlorophyll-protein complex known as the reaction center of each photosystem . [ 1 ]
Bacteriochlorophyll and carotenoids are two molecules responsible for harvesting light energy. Current models of the organization of bacteriochlorophyll and carotenoids (the main constituents) inside the chlorosomes have put them in a lamellar organization, where the long farnesol tails of the bacteriochlorophyll intermix with carotenoids and each other, forming a structure resembling a lipid ...
In plants, carotenoids can occur in roots, stems, leaves, flowers, and fruits. Carotenoids have two important functions in plants. First, they can contribute to photosynthesis. They do this by transferring some of the light energy they absorb to chlorophylls, which then uses this energy for photosynthesis. Second, they can protect plants which ...
Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum . Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm.