Search results
Results From The WOW.Com Content Network
Descartes's theorem (plane geometry) Descartes's theorem on total angular defect ; Diaconescu's theorem (mathematical logic) Diller–Dress theorem (field theory) Dilworth's theorem (combinatorics, order theory) Dinostratus' theorem (geometry, analysis) Dimension theorem for vector spaces (vector spaces, linear algebra) Dini's theorem
Pages in category "Theorems in geometry" The following 48 pages are in this category, out of 48 total. This list may not reflect recent changes. 0–9. 2π theorem; A.
Pages in category "Theorems in algebraic geometry" The following 98 pages are in this category, out of 98 total. ... Clifford's theorem on special divisors; D.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]
Absolute geometry is an extension of ordered geometry, and thus, all theorems in ordered geometry hold in absolute geometry. The converse is not true. Absolute geometry assumes the first four of Euclid's Axioms (or their equivalents), to be contrasted with affine geometry, which does not assume Euclid's third and fourth axioms. Ordered geometry ...