Search results
Results From The WOW.Com Content Network
Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, ... For example, "5 metres per second ...
This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...
A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...
where F ext is the net external force on the body, v rel is the relative velocity of the escaping or incoming mass with respect to the center of mass of the body, and v is the velocity of the body. [3] In astrodynamics, which deals with the mechanics of rockets, the term v rel is often called the effective exhaust velocity and denoted v e. [4]
Noteworthy examples include the three-body problem, the double pendulum, dynamical billiards, and the Fermi–Pasta–Ulam–Tsingou problem. Newton's laws can be applied to fluids by considering a fluid as composed of infinitesimal pieces, each exerting forces upon neighboring pieces.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
An example of modeling a real-world problem using differential equations is the determination of the velocity of a ball falling through the air, considering only gravity and air resistance. The ball's acceleration towards the ground is the acceleration due to gravity minus the deceleration due to air resistance.
Here it was also shown that the outflow velocity is predicted extremely well by Torricelli's law and that no velocity correction (like a "coefficient of velocity") is needed. The problem remains how to determine the cross-section of the vena contracta.