When.com Web Search

  1. Ad

    related to: volume of rectangular prism problems

Search results

  1. Results From The WOW.Com Content Network
  2. Paper bag problem - Wikipedia

    en.wikipedia.org/wiki/Paper_bag_problem

    A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.

  3. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  4. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    Rectangular cuboid: it has six rectangular faces (also called a rectangular parallelepiped, or sometimes simply a cuboid). Right rhombic prism : it has two rhombic faces and four congruent rectangular faces.

  5. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism is a right n-bipyramid. A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}.

  6. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    Hyperboloid of one sheet. Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space). [1] A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior.

  7. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of the products of their bases and heights. Some figures have two parallel bases (such as trapezoids and frustums), both ...

  8. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing problems are a class of optimization problems in mathematics that involve ... The rectangular cuboids to be packed can be rotated by 90 degrees on each axis ...

  9. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.