Search results
Results From The WOW.Com Content Network
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
The equation for universal gravitation thus takes the form: =, where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
For example, an equation detailing the force might be specified, like Newton's law of universal gravitation. By inserting such an expression for F {\displaystyle \mathbf {F} } into Newton's second law, an equation with predictive power can be written.
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
The force on the mass is equal to the vector sum of the spring force and the kinetic frictional force. When the velocity changes sign (at the maximum and minimum displacements ), the magnitude of the force on the mass changes by twice the magnitude of the frictional force, because the spring force is continuous and the frictional force reverses ...
Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: =, so the impulse J delivered by a steady force F acting for time Δ t is: J = F Δ t . {\displaystyle \mathbf {J} =\mathbf {F} \Delta t.}
Specific force (SF) is a mass-specific quantity defined as the quotient of force per unit mass. S F = F / m {\displaystyle \mathrm {SF} =F/m} It is a physical quantity of kind acceleration , with dimension of length per time squared and units of metre per second squared (m·s −2 ).