Search results
Results From The WOW.Com Content Network
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter : solid , liquid , and gas , and in rare cases, plasma .
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
Sensible heat is sensed or felt in a process as a change in the body's temperature. Latent heat is energy transferred in a process without change of the body's temperature, for example, in a phase change (solid/liquid/gas). Both sensible and latent heats are observed in many processes of transfer of energy in nature.
A phase-change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat or cooling. Generally the transition will be from one of the first two fundamental states of matter - solid and liquid - to the other. The phase transition may also be between non-classical states of matter, such as ...
Transfers of energy as work, or as heat, or of matter, between the system and the surroundings, take place through the walls, according to their respective permeabilities. Matter or energy that pass across the boundary so as to effect a change in the internal energy of the system need to be accounted for in the energy balance equation.
In problems of heat transfer with phase change, for instance, conservation of energy dictates that the discontinuity of heat flux at the boundary must be accounted for by the rate of latent heat release (which is proportional to the local velocity of the interface).
Heat pipes employ phase change to transfer thermal energy from one point to another by the vaporization and condensation of a working fluid or coolant. Heat pipes rely on a temperature difference between the ends of the pipe, and cannot lower temperatures at either end below the ambient temperature (hence they tend to equalize the temperature ...