When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  3. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  4. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  5. Vector quantity - Wikipedia

    en.wikipedia.org/wiki/Vector_quantity

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [1] [2] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  6. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    The set of vectors whose 1-norm is a given constant forms the surface of a cross polytope, which has dimension equal to the dimension of the vector space minus 1. The Taxicab norm is also called the ℓ 1 {\displaystyle \ell ^{1}} norm .

  7. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those vectors that are only stretched, with neither rotation nor shear.

  8. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    Like polar and cylindrical vectors, spherical vectors can be specified using simplified autonomous equations, in this case for ρ, θ, and φ. A three-dimensional vector whose magnitude is 5 units, whose azimuth angle is π/9 radians (20°), and whose zenith angle is π/4 radians (45°) can be specified as:

  9. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    In terms of the standard unit vectors i, j, k of Cartesian 3-space, these specific types of vector-valued functions are given by expressions such as = + + where f(t), g(t) and h(t) are the coordinate functions of the parameter t, and the domain of this vector-valued function is the intersection of the domains of the functions f, g, and h.