Search results
Results From The WOW.Com Content Network
Mason's gain formula (MGF) is a method for finding the transfer function of a linear signal-flow graph (SFG). The formula was derived by Samuel Jefferson Mason, [1] for whom it is named. MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on ...
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
This implies that it cannot have a defined moment generating function in a neighborhood of zero. [9] Indeed, the expected value E [ e t X ] {\displaystyle \operatorname {E} [e^{tX}]} is not defined for any positive value of the argument t {\displaystyle t} , since the defining integral diverges.
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The moment generating function of the logarithm of a Weibull distributed random variable is given by [12] [] = (+) where Γ is the gamma function. Similarly, the characteristic function of log X is given by
Moment-generating function, in probability and statistics .mgf, (for Mascot generic format ) a data file format used by Mascot mass spectrometry software Mask generation function , a function generating an arbitrary number of bits for a given input (for example MGF1 from PKCS 1 )
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: