Search results
Results From The WOW.Com Content Network
The degree sum formula states that, given a graph = (,), = | |. The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group ...
The sum of degrees of all six vertices is 2 + 3 + 2 + 3 + 3 + 1 = 14, twice the number of edges. In graph theory, the handshaking lemma is the statement that, ...
The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges).
The inequality between the sum of the largest degrees and the sum of the remaining degrees can be established by double counting: the left side gives the numbers of edge-vertex adjacencies among the highest-degree vertices, each such adjacency must either be on an edge with one or two high-degree endpoints, the () term on the right gives the ...
A graph meeting the conditions of Ore's theorem, and a Hamiltonian cycle in it. There are two vertices with degree less than n/2 in the center of the drawing, so the conditions for Dirac's theorem are not met. However, these two vertices are adjacent, and all other pairs of vertices have total degree at least seven, the number of vertices.
An undirected graph has an Eulerian cycle if and only if every vertex has even degree, and all of its vertices with nonzero degree belong to a single connected component. [6] An undirected graph can be decomposed into edge-disjoint cycles if and only if all of its vertices have even degree. So, a graph has an Eulerian cycle if and only if it ...
K n has n(n – 1)/2 edges (a triangular number), and is a regular graph of degree n – 1. All complete graphs are their own maximal cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices.
The algorithm addresses the problem that T is not a tour by identifying all the odd degree vertices in T; since the sum of degrees in any graph is even (by the Handshaking lemma), there is an even number of such vertices. The algorithm finds a minimum-weight perfect matching M among the odd-degree ones.