Search results
Results From The WOW.Com Content Network
All odd primes between 3 and 89, inclusive, are cluster primes. ... All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages.
Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in ...
The multiplicative property of the norm implies that a prime number p is either a Gaussian prime or the norm of a Gaussian prime. Fermat's theorem asserts that the first case occurs when p = 4 k + 3 , {\displaystyle p=4k+3,} and that the second case occurs when p = 4 k + 1 {\displaystyle p=4k+1} and p = 2. {\displaystyle p=2.}
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.
A Pythagorean prime is a prime number of the form +. Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares .
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
An odd prime p is a generalized Fermat number if and only if p is congruent to 1 (mod 4). (Here we consider only the case n > 0 , so 3 = 2 2 0 + 1 {\displaystyle 2^{2^{0}}\!+1} is not a counterexample.)
If p is an odd prime and p − 1 = 2 s d with s > 0 and d odd > 0, then for every a coprime to p, either a d ≡ 1 (mod p) or there exists r such that 0 ≤ r < s and a 2 r d ≡ −1 (mod p). This result may be deduced from Fermat's little theorem by the fact that, if p is an odd prime, then the integers modulo p form a finite field , in which ...