Ad
related to: set operation and venn diagram
Search results
Results From The WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory , and to illustrate simple set relationships in probability , logic , statistics , linguistics and computer science .
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A naive theory in the sense of "naive set theory" is a non-formalized theory, that is, a theory that uses natural language to describe sets and operations on sets. Such theory treats sets as platonic absolute objects. The words and, or, if ... then, not, for some, for every are treated as in ordinary mathematics. As a matter of convenience, use ...
Just as arithmetic features binary operations on numbers, set theory features binary operations on sets. [9] The following is a partial list of them: Union of the sets A and B, denoted A ∪ B, is the set of all objects that are a member of A, or B, or both. [10] For example, the union of {1, 2, 3} and {2, 3, 4} is the set {1, 2, 3, 4}.
Venn diagram of = . The symmetric difference is equivalent to the union of both relative complements, that is: [1] = (), The symmetric difference can also be expressed using the XOR operation ⊕ on the predicates describing the two sets in set-builder notation:
The operations, arranged in the same matrix as above. The 2x2 matrices show the same information like the Venn diagrams. (This matrix is similar to this Hasse diagram.) In set theory the Venn diagrams represent the set, which is marked in red. These 15 relations, except the empty one, are minterms and can be the case.