Search results
Results From The WOW.Com Content Network
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.
The equivalence of power laws with a particular scaling exponent can have a deeper origin in the dynamical processes that generate the power-law relation. In physics, for example, phase transitions in thermodynamic systems are associated with the emergence of power-law distributions of certain quantities, whose exponents are referred to as the ...
Simplest rules Derivative of a constant; Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second ...
The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...
The familiar decimal notation for real numbers can also be viewed as an example of a power series, with integer coefficients, but with the argument x fixed at 1 ⁄ 10. In number theory, the concept of p-adic numbers is also closely related to that of a power series.
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.
One of the reasons for the importance of the matrix exponential is that it can be used to solve systems of linear ordinary differential equations.The solution of = (), =, where A is a constant matrix and y is a column vector, is given by =.
The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (that is, ) approaches from below, even in cases where the radius of convergence, , of the power series is equal to and we cannot be sure whether the limit should be finite or not.