Search results
Results From The WOW.Com Content Network
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
Effect of applying various 2D affine transformation matrices on a unit square. Note that the reflection matrices are special cases of the scaling matrix. Affine transformations on the 2D plane can be performed in three dimensions. Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis.
The determinant, permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns). The multilinear polynomials in n {\displaystyle n} variables form a 2 n {\displaystyle 2^{n}} -dimensional vector space , which is also the basis used in the ...
A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...
2D perspective transformation matrix: Image title: Comparison of the effects of applying 2D affine and perspective transformation matrices on a unit square by CMG Lee. In this example, a = 3, b = 4, c = 5, d = 6, e = 2, f = 4, g = 2 and h = 1. Width: 100%: Height: 100%
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
Thus every shear matrix has an inverse, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with shear element λ, then S n is a shear matrix whose shear element is simply nλ.
The group of similarity transformations; [30] i.e., affine transformations represented by a matrix A that is a scalar times an orthogonal matrix. Thus homothety is added, self-similarity is considered a symmetry. The group of affine transformations represented by a matrix A with determinant 1 or −1; i.e., the transformations which preserve ...