Search results
Results From The WOW.Com Content Network
In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
Given some initial conditions, we can either solve the recurrence entirely or obtain a solution in power series form. Since the ratio of coefficients A k / A k − 1 {\displaystyle A_{k}/A_{k-1}} is a rational function , the power series can be written as a generalized hypergeometric series .
If the ODEs do not have the required form, it is nearly always possible to find an expanded set of equations that do have the required form, such that a subset of the solution is a solution of the original ODEs. Several coefficients of the power series are calculated in turn, a time step is chosen, the series is evaluated at that time, and the ...
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.
In the following we solve the second-order differential equation called the hypergeometric differential equation using Frobenius method, named after Ferdinand Georg Frobenius. This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for ...
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
The series converges for | | < (note, x may be complex), as may be seen by applying the ratio test to the recurrence. The recurrence may be started with arbitrary values of a 0 and a 1, leading to the two-dimensional space of solutions that arises from second order differential equations. The standard choices are:
Here is a proof of Euler's formula using power-series ... and solving for either cosine or sine. These formulas can ... In differential equations, ...