When.com Web Search

  1. Ads

    related to: deep learning with pytorch step by

Search results

  1. Results From The WOW.Com Content Network
  2. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, [15] Uber's Pyro, [16] Hugging Face's Transformers, [17] PyTorch Lightning, [18] [19] and Catalyst. [20] [21] PyTorch provides two high-level features: [22] Tensor computing (like NumPy) with strong acceleration via graphics processing units (GPU)

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    MXNet: an open-source deep learning framework used to train and deploy deep neural networks. PyTorch: Tensors and Dynamic neural networks in Python with GPU acceleration. TensorFlow: Apache 2.0-licensed Theano-like library with support for CPU, GPU and Google's proprietary TPU, [116] mobile; Theano: A deep-learning library for Python with an ...

  5. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1] In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text. If the input text is long, the fixed-length vector ...

  6. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  7. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...

  8. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]

  9. Teacher forcing - Wikipedia

    en.wikipedia.org/wiki/Teacher_forcing

    It involves feeding observed sequence values (i.e. ground-truth samples) back into the RNN after each step, thus forcing the RNN to stay close to the ground-truth sequence. [ 2 ] The term "teacher forcing" can be motivated by comparing the RNN to a human student taking a multi-part exam where the answer to each part (for example a mathematical ...